Classification with Belief Decision Trees

نویسندگان

  • Zied Elouedi
  • Khaled Mellouli
  • Philippe Smets
چکیده

Decision trees are considered as an efficient technique to express classification knowledge and to use it. However, their most standard algorithms do not deal with uncertainty, especially the cognitive one. In this paper, we develop a method to adapt the decision tree technique to the case where the object’s classes are not exactly known, and where the uncertainty about the class’ value is represented by a belief function. The adaptation concerns both the construction of the tree and its use to classify new objects characterized by uncertain attribute values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decision trees using the belief function theory

This paper presents an algorithm for building decision trees in an uncertain environment. Our algorithm will use the theory of belief functions in order to represent the uncertainty about the parameters of the classification problem. Our method will be concerned with both the decision tree building task and the classification task.

متن کامل

Classification Trees Based on Belief Functions

Decision trees classifiers are popular classification methods. In this paper, we extend to multi-class problems a decision tree method based on belief functions previously described for 2-class problems only. We propose two ways to achieve this extension: combining multiple 2-class trees together and directly extending the estimation of belief functions within the tree to the multi-class settin...

متن کامل

A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...

متن کامل

Predicting The Type of Malaria Using Classification and Regression Decision Trees

Predicting The Type of Malaria Using Classification and Regression Decision Trees Maryam Ashoori1 *, Fatemeh Hamzavi2 1School of Technical and Engineering, Higher Educational Complex of Saravan, Saravan, Iran 2School of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran Abstract Background: Malaria is an infectious disease infecting 200 - 300 million people annually. Environme...

متن کامل

Pruning Method of Belief Decision Trees

The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief de...

متن کامل

Handling uncertain labels in multiclass problems using belief decision trees

This paper investigates the induction of decision trees based on the theory of belief functions. This framework allows to handle training examples whose labeling is uncertain or imprecise. A former proposal to build decision trees for twoclass problems is extended to multiple classes. The method consists in combining trees obtained from various two-class coarsenings of the initial frame.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000